Welcome!
Introduction to the
Science Standards for Alaska for 9-12 Grade

I was reading a book on Helium. I couldn’t put it down.
Introduce Yourself

Rename your Zoom settings to include your district and subjects you teach.
Vicki Lowe
Kenai Peninsula Borough School District
vixinak@gmail.com

Andrea Pokrzywinski
Lower Kuskokwim School District
andreaupnorth@gmail.com

Gary Cooper
Alaska Science Teachers Association

9-12 Introduction to Science Standards for Alaska Webinar Team
Alaska Department of Education & Early Development
February 12, 2021
What is in the bubbles? How did it get there?
Open this link and share your thoughts. What do you wonder?

In what lesson, unit or class would you use this phenomena as anchor to teach from?

https://padlet.com/vickilowe/phenomena
Using Phenomena in NGSS-Designed Instruction
An Interview with Brian Reiser
Scientific Inquiry
What are your burning questions about the Alaska Science Standards?

Post your questions in the chat
Presentation Objectives

1. Review the 3 Dimensional foundations that support each performance expectation

2. Describe the anatomy of a science standard for Alaska

3. Share tools and models to assist in implementation of the Science Standards for Alaska
Science Standards in the Past

Facts about science

Doing science
Why a revision?

Learning Pyramid

- Lecture: 10%
- Reading: 20%
- Audiovisual: 30%
- Demonstration: 50%
- Discussion: 75%
- Practice doing: 90%
- Teach others: 90%

Average student retention rates:

Source: National Training Laboratories, Bethel, Maine
1. Engage

3. Explain

4. Elaborate

5. Evaluate
Addressing Common Misconceptions

» Scientific ideas are absolute and unchanging.

» The process of science is purely analytic and does not involve creativity.

» Science is complete.

» Science is a solitary pursuit.

» Science is boring.

More misconceptions about science

» Because scientific ideas are tentative and subject to change, they can't be trusted.

» Scientific ideas are judged democratically based on popularity.

» Scientists are judged on the basis of how many correct hypotheses they propose (i.e., good scientists are the ones who are "right" most often).

» Science is a collection of facts.
Quick Poll

How familiar are you with the Science Standards for Alaska?

The 3 dimensions are cross cutting concepts, disciplinary core ideas and__________.
3 Dimensions Science Standards for Alaska

Science and Engineering Practices (doing science)

Disciplinary Core Ideas (facts)

Crosscutting Concepts (connecting science)
This symbol actually means something!

Science & Engineering Practices (doing science)

Disciplinary Core Ideas (facts)

Crosscutting Concepts (connecting science)

Student Performance Expectation (PE)
HS-PS3-2

Students who demonstrate understanding can: Develop and use models to illustrate that energy at the macroscopic scale can be accounted for as a combination of energy associated with the motion of particles (objects) and energy associated with the relative positions of particles (objects).

Clarification Statement: Examples of phenomena at the macroscopic scale could include the conversion of energy stored due to position of an object above the earth, and the energy stored between two electrons, which could include diagrams, drawings, descriptions, and computer simulations.

The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education:

<table>
<thead>
<tr>
<th>Science and Engineering Practices</th>
<th>Disciplinary Core Ideas</th>
<th>Crosscutting Concepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Develop and use a model based on evidence to illustrate the relationships between systems or between components of a system.</td>
<td>• Energy is a quantitative property of a system that depends on the motion and interactions of matter and radiation within that system. That there is a single quantity called energy is due to the fact that a system's total energy is conserved, even as, within the system, energy is continually transferred from one object to another and between its various possible forms.</td>
<td>• Energy cannot be created or destroyed—only moves between one place and another place, between objects and/or fields, or between systems.</td>
</tr>
<tr>
<td></td>
<td>• At the macroscopic scale, energy manifests itself in multiple ways, such as in motion, sound, light, and thermal energy.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• These relationships are better understood at the microscopic scale, at which all of the different manifestations of energy combine with the motion of particles.</td>
<td></td>
</tr>
</tbody>
</table>

Assessment boundaries will be found here.

SEP

DCI

CCC
Science and Engineering Practices

● Asking questions and defining problems
● Developing and using models
● Planning and carrying out investigations
● Analyzing and interpreting data
● Using mathematics, information and computer technology, and computational thinking
● Constructing explanations and designing solutions
● Engaging in argument from evidence
● Obtaining, evaluating, and communicating information

Framework pp.41-82
Crosscutting Concepts

- Patterns
- Cause and effect
- Scale, proportion, and quantity
- Systems and system models
- Energy and matter
- Structure and function
- Stability and change

Framework pp. 83-102
Disciplinary Core Ideas

Physical Science
- PS1: Matter and Its Interactions
- PS2: Motion and Stability: Forces and Interactions
- PS3: Energy
- PS4: Waves and Their Applications in Technologies for Information Transfer

Life Science
- LS1: From Molecules to Organisms: Structure and Processes
- LS2: Ecosystems: Interactions, Energy, and Dynamics
- LS3: Heredity: Inheritance and Variation of Traits
- LS4: Biological Evolution: Unity and Diversity
Disciplinary Core Ideas (cont.)

**Earth and Space Science**
- ESS1: Earth’s Place in the Universe
- ESS2: Earth’s Systems
- ESS3: Earth and Human Activity

**Engineering, Technology, and Applications of Science**
- ETS1: Engineering Design
- ETS2: Links Among Engineering, Technology, Science, and Society
The old way:
List the phases of the king salmon life cycle

Create a simulation illustrating how salmon development is impacted by increasing water temperature.

Using mathematics, information and computer technology, and computational thinking

Disciplinary Core Ideas

From Molecules to Organisms:
Structure and Processes

Crosscutting Concepts

Cause and effect
Three Dimensions Intertwined

- Performance Expectations
- The Framework requires contextual application of the three dimensions by students.
- Focus is on how and why as well as what
Time for a Quick Poll

How I’m feeling about all of this?
An Analogy between 3-Dimensional Learning and Cooking

Kitchen Tools & Techniques (Practices)

Basic Ingredients (Core Ideas)

Vegetables, Herbs, Spices, & Seasonings (Crosscutting Concepts)

Preparing a Meal (Three dimensional Learning)
Where to find the SSA’s

https://ngss.nsta.org/
Break Out Activity-Explore SSA

Explore the NGSS NSTA HUB for 5 minutes -
https://ngss.nsta.org/AccessStandardsByTopic.aspx

In your breakout group, share what you found. Chat about reflections, share thoughts and questions.
OXYGEN AND MAGNESIUM TOGETHER?! 

OMg
HS-ESS2-2 Students who demonstrate understanding can: Analyze geoscience data to evaluate claims that one change to Earth’s surface creates feedbacks that cause changes to other Earth systems.

Clarification Statement: Examples should include climate feedbacks, such as how an increase in greenhouse gases causes a rise in global temperature that melts glacial and sea ice, which reduces the amount of sunlight reflected from Earth’s surface, increasing surface temperatures and further reducing the amount of ice. Examples could also be taken from other system interactions, such as feedbacks due to the effects of permafrost thawing; how the loss of ground vegetation causes an increase in water runoff and soil erosion; how dammed rivers increase groundwater recharge and decrease sediment transport, and how the loss of wetlands causes a decrease in local humidity that further reduces wetland extent.
https://thewonderofscience.com/teaching

Science Engineering Practices

Cross Cutting Concepts

Scientific Inquiry
Unit 1 Kinetic Molecular Theory and Climate Change
By the End of this Activity You Should Be Able to...

**Science and Engineering Practice**

**Content Objective**
- I can make a model to predict what happens to a substance when the kinetic energy of the particles changes.

**Disc. Core Idea**

**Language Objective**
- I can use my model to make a claim and support it with evidence and reasoning.

**Cross Cutting Concept**

**Language Arts and Nature of Science Connections**
Sea levels in the U.S. are rising fastest along the East Coast and Gulf of Mexico.

Global average sea level has increased 8 inches since 1880. The local rate varies depending on both global and local factors, including currents, ocean floor topography, variation in ocean density, and land uplift or subsidence due to geological processes or human activities.

© Union of Concerned Scientists 2014; www.ucsusa.org/sealevelrise
What is causing sea level to rise faster on the East vs. West Coast?

In your breakout group or small discussion group come up with an answer to this question.

Use this model to build a prediction to explain this phenomenon. [https://phet.colorado.edu/en/simulation/gas-properties](https://phet.colorado.edu/en/simulation/gas-properties)

Sentence Frames:

- I believe that _____ because...
- The evidence suggests that...
- In watching/reading/listening to _____, it lead me to think that...
The following data is collected from a reaction. The reaction 2NO₂(g) + 2H₂O(l) → 2HNO₃(aq) + O₂(g) is run. After the reaction is complete, the data is collected. Below is a table of the collected data:

<table>
<thead>
<tr>
<th>Trial</th>
<th>Initial Temperature</th>
<th>Final Temperature</th>
<th>Pressure Change</th>
<th>Mass Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>300 K</td>
<td>250 K</td>
<td>5 atm</td>
<td>0.03 g</td>
</tr>
<tr>
<td>2</td>
<td>350 K</td>
<td>300 K</td>
<td>6 atm</td>
<td>0.04 g</td>
</tr>
<tr>
<td>3</td>
<td>400 K</td>
<td>350 K</td>
<td>7 atm</td>
<td>0.05 g</td>
</tr>
</tbody>
</table>

Using the data in the table, determine the relationship between ΔP and ΔT.
Unit-1 Kinetic Molecular Theory and Climate Change

https://docs.google.com/document/d/1OzevRazXw5CgcQ46mVfK0TX8Jbn_8lhC2DmjHwPsiE/edit

Unit 1 Patterns Chemistry Distance Learning

Unit 1: KMT and Climate Change- approximately 12-15 class periods (90 minutes each)

Unit Resources:
- Unit 1 Folder
- Unit 1 Interactive Notebook
- Unit 1 Tracker
- Vocabulary
- Sample Unit Timeline
- Canvas Course (search for Patterns Chemistry in Canvas Commons)
- Unit 1 Paper Packet (UPDATED!)Unit 1 Paper Packet - Patterns Chemistry Distance Learning

Rubrics

ALT1 KMT and Climate Change: Use models to illustrate how pressure, temperature, and volume affect the motions of particles and how this relates to climate change.

Anchoring Phenomenon: Differences in atmospheric gas temperatures, snowpack, and seawater are causing changes to local and global weather patterns.

Unit Essential Question: How, and to what extent, is climate change causing change to Earth’s systems?
Implementing New Science Standard

- Share tools and models to assist in implementation of the Science Standards for Alaska
Is it the destination or the journey?
https://thewonderofscience.com/

bozeman.science.com
**Videos**

**Scientific & Engineering Practices**
- Asking Questions & Defining Problems
- Developing & Using Models
- Planning & Carrying Out Investigations
- Analyzing & Interpreting Data
- Mathematics & Computational Thinking
- Construct Explanations & Design Solutions
- Engaging in Argument from Evidence
- Obtain, Evaluate, Communicate Information

**Cross Cutting Concepts**
- Patterns
- Cause & Effect: Mechanism & Explanation
- Scale, Proportion, & Quantity
- Systems & System Models
- Energy & Matter: Flow, Cycle, Conservation
- Structure & Function
- Stability & Change
PHENOMENA

A phenomenon is an observable event. In the science classroom a carefully chosen phenomenon can drive student inquiry.
3-Dimensional Lesson Screening Tool

1. The lesson contains a **phenomenon** (science) or a **problem** (engineering).
2. The lesson is **student-centered** and requires students to figure something out.
3. The phenomenon or problem builds to an understanding of a **Disciplinary Core Idea (DCI)** in one of the assessed Performance Expectations.
4. Students engage in one or more of the **Science and Engineering Practices (SEP)** to aid in making sense of the phenomenon or problem. (check all that apply)
   - Analyzing & Interpreting Data
   - Asking Questions
   - Constructing Explanations
   - Defining Problems
   - Designing Solutions
   - Developing & Using Models
   - Engaging in Argument from Evidence
   - Mathematics & Computational Thinking
   - Obtain, Evaluate, Communicate Information
   - Planning & Carrying Out Investigations
5. Students use one or more of the **Crosscutting Concepts (CCC)** to aid in making sense of the phenomenon or problem. (check all that apply)
   - Cause & Effect
   - Energy & Matter
   - Patterns
   - Scale, Proportion, & Quantity
   - Stability & Change
   - Structure & Function
   - Systems & System Models

3-Dimensional Lesson Screening Tool (cont.)

6. The lesson provides **explicit instruction** on how to use the **SEP** and **CCC** appropriately. (e.g. scaffolds, protocols, etc.)
7. The lesson provides opportunities for **student discourse** as they express ideas, make their thinking visible, and respond to peer and teacher feedback.
8. The lesson includes embedded **formative assessments** so that students and the teacher can determine what future learning needs to occur.
9. The lesson uses **scientifically authentic** information and models to support students in making sense of the phenomenon or problem. (i.e. real science)
10. The learning is **relevant and age appropriate** based on the grade-level learning progressions.
11. The learning contributes to a better understanding of the **anchoring phenomenon** or **problem** in the unit.
12. Instruction is **differentiated** and includes supports for all students.

CC BY-NC-SA 4.0
thewonderofscience.com
Argumentation Template

The Guiding Question:

Our Claim:

Our Evidence:  

Our Reasoning:
Break Out Activity - Explore the Wonder of Science

Spend 5 minutes exploring https://thewonderofscience.com/teaching

In your breakout group, share what you found that will be useful to you. Chat about reflections, share thoughts and questions.
Alaska Science Teacher Networking

AK Listserv -
http://list.state.ak.us/mailman/listinfo/ak.scienceteachers?fbclid=IwAR1Lx1YLNKx6B9RsSDeW4Y_MPGO2PkQNC83eXI8yJY58s3zpOI FKOD_z6c

Alaska Science Teachers Facebook
https://www.facebook.com/groups/179916432073354

Alaska Science Teachers Association-
https://asta.wildapricot.org/sys/website
Model Open Source Learning Models Links

Inquiry Hub Biology -
https://www.colorado.edu/program/inquiryhub/curricula/inquiryhub-biology

Inquiry Hub Chemistry -
https://docs.google.com/document/d/1gSVXTDxPRsY7PTR1zQxCY5aU02E8VwH1RAH-0WQ9fAs/edit (Under construction)

Patterns Science-
https://sites.google.com/beaverton.k12.or.us/patterns/home
Model Open Source Learning Models Links

New Visions Science
Living Environment - Transitional
https://curriculum.newvisions.org/science/course/living-environment/

Earth Science - Transitional
https://curriculum.newvisions.org/science/course/earth-science/

HS Earth Science - NGSS
https://curriculum.newvisions.org/science/course/earth-space-science/
Model Open Source Learning Models Links

Physics- (Under construction)
https://curriculum.newvisions.org/science/course/physics/

HS Biology - NGSS
https://curriculum.newvisions.org/science/course/biology/

Chemistry-
https://curriculum.newvisions.org/science/course/chemistry/

Inquiry Hub Stem - Middle School-
https://www.colorado.edu/program/schoolwide-labs/computational-thinking-classroom-resources-ct-integrated-storyline-units