Zoom Tips

Everyone in the meeting is muted. Please remain muted unless you are in a breakout session or asked to share out.

Presenters love seeing their audience, so if you're comfortable, turn your camera on so they can see you nodding in understanding and encouragement. If you want to make sure to look your best, face a window or light source.

The chat box is a good place to engage with other participants and ask questions. Selecting this icon will open the chat window.

Speaker/Gallery View

Speaker view shows the active speaker. Gallery shows all participants. Make sure to take the time to find that button (at the top right corner of your screen) so you can switch between the views.

Science Standards for Alaska (SSAs)

Bjørn Wolter, Ph.D. & Deb Riddle
Alaska Department of Education & Early Development
January 27, 2021

Our Mission and Vision

OUR MISSION An excellent education for every student every day. All students will succeed in their

OUR VISION

Alaska Statute 14.03.015

education and work, shape worthwhile and satisfying lives for themselves, exemplify the best values of society, and be effective in improving the character and quality of the world about them.

DEED exists to provide information, resources, and **leadership** to support an excellent education for every student every day.

Alaska's Education Challenge

- Introductions
- ✓ Why new standards?
- ✓ The Standards
- ✓ How to read the SSAs
- ✓ Major shifts
- Learning strategies
- Resources
- Upcoming webinars

Introductions

8

Why New Standards?

Need for New Standards?

· An Excellent Education for Every Student Every Day ·

Development Process

What standards were considered as examples?

PROGRESS

K-12 Science Standards for Alaska

Misconceptions about science

Because scientific ideas are tentative and subject to change, they can't be trusted.

Scientific ideas are judged democratically based on popularity.

Scientists are judged on the basis of how many correct hypotheses they propose

Science is a collection of facts.

Moving on from just facts

When instruction focuses on facts...

- Students don't build the skills needed for real science
- Students don't relate to science or scientists
- Students don't understand where science comes from

Old Alaska GLEs for Science

Doing science

Organization of the SSAs

Science and
Engineering
Practices
(doing science)

Disciplinary
Core Ideas
(facts)

Crosscutting
Concepts
(connecting
science)

Active Learning

- ■Science is constructivist
 - Experiential
 - Students create own epistemology of the world within the bounds of evidence
- Benefits of active learning in science:
 - Provide opportunity for and promotes higher order thinking
 - Promotes interaction
 - Increases retention
 - Connects theory to application
 - Builds proficiency and self-esteem

Active Learning Pyramid

Brain Break!

21

1 Perfect

2 Pretty Good

3 Average

4 Some Issues

5 HELP!

23

The Standards

Goals of Science Education

25

How to Read the SSAs

How to Read the Standards...

MS-PS4-1 1

Students who demonstrate understanding:

Qualitatively and quantitatively describe a simple model for waves that includes how the amplitude of a wave is related to the energy in a wave.

Clarification Statement: Examples can include waves modeled with a jump rope, slinky, water, seismic activity, and sound. 2

Assessment Boundary: Assessment does not include electromagnetic waves and is limited to standard repeating waves.

The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education.

	Science and Engineering Practices 4	Disciplinary Core Concepts	Crosscutting Concepts
	Using Mathematics and Computational Thinking	PS4.A: Wave Properties	Patterns
	Use mathematical representations to describe and/or	A simple wave has a repeating pattern	Graphs and charts can be used to
	support scientific conclusions and design solutions.	with a specific wavelength, frequency,	identify patterns in data.
		and amplitude.	
	Connections to Nature of Science 6		
١	Scientific Knowledge is Based on Empirical Evidence		
	Science knowledge is based upon logical and conceptual		
1	connections between evidence and explanations.		

How to Read the Standards....

MS-PS4-1
 Performance Expectation

Students who demonstrate understanding: Qualitatively and quantitatively describe a simple model for waves that includes how the amplitude of a wave is related to the energy in a wave.

- Clarification Statement: Examples can include waves modeled with a jump rope, slinky, water, seismic activity, and sound.
- **Assessment Boundary:** Assessment does not include electromagnetic waves and is limited to standard repeating waves.

How to Read the Standards...

Foundational boxes

The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education.

	Science and Engineering Practices 4	Disciplinary Core Concepts	Crosscutting Concepts
	Using Mathematics and Computational Thinking (Ctrl)	PS4.A: Wave Properties	Patterns
	Use mathematical representations to describe and/or	A simple wave has a repeating pattern	Graphs and charts can be used to
	support scientific conclusions and design solutions.	with a specific wavelength, frequency,	identify patterns in data.
		and amplitude.	
	Connections to Nature of Science 5		
/	Scientific Knowledge is Based on Empirical Evidence		
	Science knowledge is based upon logical and conceptual		
	connections between evidence and explanations.		

29

Major Shifts in the SSAs

Five Major Shifts

Three-Dimensional Learning

Disciplinary Core Ideas

	Life	Science	Physical Science
ſ	LS1:	From Molecules to Organisms:	PS1: Matter and Its Interactions
ı		Structures and Processes	PS2: Motion and Stability: Forces and
ı	LS2:	Ecosystems: Interactions, Energy, and	Interactions
ı		Dynamics	PS3: Energy
	LS3:	Heredity: Inheritance and Variation of Traits	PS4: Waves and Their Applications in Technologies for Information Transfer
ı	LS4:	Biological Evolution: Unity and Diversity	
	Eart	th & Space Science	Engineering & Technology
Ī	ESS1:	Earth's Place in the Universe	ETS1: Engineering Design
	ESS2:	Earth's Systems	ETS2: Links Among Engineering,
	ESS3:	Earth and Human Activity	Technology, Science, and Society

Crosscutting Concepts

- 1. Patterns
- 2. Cause and effect: Mechanisms and explanation
- 3. Scale, proportion, and quantity
- 4. Systems and system models
- 5. Energy and matter: Flows, cycles, and conservation
- 6. Structure and function
- 7. Stability and change

Science and Engineering Practices (SEPs)

- 1. Asking questions (for science) and defining problems (for engineering)
- 2. Developing and using models
- 3. Planning and carrying out investigations
- 4. Analyzing and interpreting data
- 5. Using mathematics and computational thinking
- 6. Constructing explanations (for science) and designing solutions (for engineering)
- 7. Engaging in argument from evidence
- 8. Obtaining, evaluating, and communicating information.

35

Learning Strategies

Engaging in Arguments Using Evidence

Argumentation

Argumentation Progression

Progression of argument

Greater sophistication

Grades K - 2	Grades 3 - 5	Middle School	High School
Make a claim and use evidence	Construct and support scientific arguments drawing on evidence, data, or a model. Consider other ideas.	Construct and present oral and written arguments supported by empirical evidence and reasoning to support or refute an explanation for a phenomenon.	Construct a counter- argument that is based in data and evidence that challenges another proposed argument.

Phenomena

Phenomena Breath

Why can I see my breath when it is cold outside?

Developing and Using Models

Modelling a Phenomenon

Pedagogical Changes

Cross-curricular Connections

 \cdot An Excellent Education for Ev ery Student Ev ery Day \cdot

45

Resources

Science Standards Webpage

https://education.alaska.gov/standards/science

Key Resources

Science Standards for Alaska (SSA) to Alaska ELA/Math Standards Connections

Alaska Science GLEs to Science Standards for Alaska Crosswalk

Teacher Primer for the Science Standards for Alaska

Where to Look for Lesson Plans

49

Upcoming Webinars

Grade-span Specific Deep Dives

Grade-span Webinars

Alaska Science Teachers' Listserv

Dr. Bjørn Wolter

Program Manager

bjorn.wolter@alaska.gov

907-465-6542

Questions?

