KINDERGARTEN

The performance expectations in kindergarten help students formulate answers to questions such as: "What happens if you push or pull an object harder? Where do animals live and why do they live there? What is the weather like today and how is it different from yesterday?" Kindergarten performance expectations include PS2, PS3, LS1, ESS2, ESS3, and ETS1

Disciplinary Core Ideas from the NRC Framework. Students are expected to develop understanding of patterns and variations in local weather and the purpose of weather forecasting to prepare for, and respond to, severe weather. Students are able to apply an understanding of the effects of different strengths or different directions of pushes and pulls on the motion of an object to analyze a design solution. Students are also expected to develop understanding of what plants and animals (including humans) need to survive and the relationship between their needs and where they live.

The crosscutting concepts of patterns; cause and effect; systems and system models; interdependence of science, engineering, and technology; and influence of engineering, technology, and science on society and the natural world are called out as organizing concepts for these disciplinary core ideas. In the kindergarten performance expectations, students are expected to demonstrate grade-appropriate proficiency in asking questions, developing and using models, planning and carrying out investigations, analyzing and interpreting data, designing solutions, engaging in argument from evidence, and obtaining, evaluating, and communicating information. Students are expected to use these practices to demonstrate understanding of the core ideas.

K. Forces and Interactions: Pushes and Pulls

Students who demonstrate understanding can:

K-PS2-1

Plan and conduct an investigation to compare the effects of different strengths or different directions of pushes and pulls on the motion of an object. [Clarification Statement: Examples of pushes or pulls could include a string attached to an object being pulled, a person pushing an object, a person stopping a rolling ball, and two objects colliding and pushing on each other.] [Assessment Boundary: Assessment is limited to different relative strengths or different directions, but not both at the same time. Assessment does not include non-contact pushes or pulls such as those produced by magnets.]

K-PS2-2

Analyze data to determine if a design solution works as intended to change the speed or direction of an object with a push or a pull.*

[Clarification Statement: Examples of problems requiring a solution could include having a marble or other object move a certain distance, follow a particular path, and knock down other objects. Examples of solutions could include tools such as a ramp to increase the speed of the object and a structure that would cause an object such as a marble or ball to turn.] [Assessment Boundary: Assessment does not include friction as a mechanism for change in speed.]

K-PS2-1

Students who demonstrate mastery can: Plan and conduct an investigation to compare the effects of different strengths or different directions of pushes and pulls on the motion of an object.

Clarification Statement: Examples of pushes or pulls could include a string attached to an object being pulled, a person pushing an object, a person stopping a rolling ball, and two objects colliding and pushing on each other.

Assessment Boundary: Assessment is limited to different relative strengths or different directions, but not both at the same time. Assessment does not include non-contact pushes or pulls such as those produced by magnets.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Planning and Carrying Out Investigations	PS2.A: Forces and Motion	Cause and Effect
With guidance, plan and conduct an	 Pushes and pulls can have different 	Simple tests can be designed to gather
investigation in collaboration with peers.	strengths and directions.	evidence to support or refute student
	 Pushing or pulling on an object can 	ideas about causes.
Connections to the Nature of Science	change the speed or direction of its	
	motion and can start or stop it.	
Scientific Investigations Use a Variety of	PS2.B: Types of Interactions	
Methods	When objects touch or collide, they push	
 Scientists use different ways to study the 	on one another and can change motion.	
world.	PS3.C: Relationship Between Energy and	
	Forces	
	A bigger push or pull makes things speed	
	up or slow down more quickly.	
	(secondary)	

K-PS2-2

Students who demonstrate understanding can: Analyze data to determine if a design solution works as intended to change the speed or direction of an object with a push or a pull.*

Clarification Statement: Examples of problems requiring a solution could include having a marble or other object move a certain distance, follow a particular path, and knock down other objects. Examples of solutions could include tools such as a ramp to increase the speed of the object and a structure that would cause an object such as a marble or ball to turn.

Assessment Boundary: Assessment does not include friction as a mechanism for change in speed.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Analyzing and Interpreting Data	PS2.A: Forces and Motion	Cause and Effect
 Analyze data from tests of an object or 	Pushes and pulls can have different	Simple tests can be designed to gather
tool to determine if it works as intended.	strengths and directions.	evidence to support or refute student
	Pushing or pulling on an object can	ideas about causes.
	change the speed or direction of its	
	motion and can start or stop it.	
	ETS1.A: Defining Engineering Problems	
	A situation that people want to change or	
	create can be approached as a problem	
	to be solved through engineering. Such	
	problems may have many acceptable	
	solutions. (secondary)	

K. Interdependent Relationships in Ecosystems: Animals, Plants, and Their Environment

Students who demonstrate understanding can:

K-LS1-1

Use observations to describe patterns of what plants and animals (including humans) need to survive. [Clarification Statement: Examples of patterns could include that animals need to take in food but plants do not; the different kinds of food needed by different types of animals; the requirement of plants to have light; and, that all living things need water.]

K-ESS2-2

Construct an argument supported by evidence for how plants and animals (including humans) can change the environment to meet their needs. [Clarification Statement: Examples of plants and animals changing their environment could include a squirrel digs in the ground to hide its food and tree roots can break concrete, or local plant and animal observations.]

K-ESS3-1

Use a model to represent the relationship between the needs of different plants and animals (including humans) and the places they live. [Clarification Statement: Examples of relationships could include that deer eat buds and leaves, therefore, they usually live in forested areas; and, grasses need sunlight so they often grow in meadows. Plants, animals, and their surroundings make up a system. Explain the characteristics of the model and the relationships.]

K-ESS3-3

Communicate solutions that will reduce the impact of humans on the land, water, air, and/or other living things in the local environment.* [Clarification Statement: Examples of human impact on the land could include cutting trees to produce paper and using resources to produce bottles. Examples of solutions could include reusing paper and recycling cans and bottles.]

K-LS1-1

Students who demonstrate understanding can: Use observations to describe patterns of what plants and animals (including humans) need to survive.

Clarification Statement: Examples of patterns could include that animals need to take in food but plants do not; the different kinds of food needed by different types of animals; the requirement of plants to have light; and, that all living things need water.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Analyzing and Interpreting Data	LS1.C: Organization for Matter and Energy	Patterns
Use observations (firsthand or from	Flow in Organisms	Patterns in the natural and human
media) to describe patterns in the natural	All animals need food in order to live and	designed world can be observed and
world in order to answer scientific	grow. They obtain their food from plants	used as evidence.
questions.	or from other animals. Plants need water	
	and light to live and grow.	
Connections to Nature of Science		
Scientific Knowledge is Based on Empirical		
Evidence		
Scientists look for patterns and order		
when making observations about the		
world.		

K-ESS2-2

Students who demonstrate understanding can: Construct an argument supported by evidence for how plants and animals (including humans) can change the environment to meet their needs.

Clarification Statement: Examples of plants and animals changing their environment could include a squirrel digs in the ground to hide its food and tree roots can break concrete, or local plant and animal observations.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Engaging in Argument from Evidence	ESS2.E: Biogeology	Systems and System Models
Construct an argument with evidence to support a claim.	 Plants and animals can change their environment. ESS3.C: Human Impacts on Earth Systems Things that people do to live comfortably can affect the world around them. But they can make choices that reduce their impacts on the land, water, air, and other living things. (secondary) 	Systems in the natural and designed world have parts that work together.

K-ESS3-1

Students who demonstrate understanding can: Use a model to represent the relationship between the needs of different plants and animals (including humans) and the places they live.

Clarification Statement: Examples of relationships could include that deer eat buds and leaves, therefore, they usually live in forested areas; and, grasses need sunlight so they often grow in meadows. Plants, animals, and their surroundings make up a system. Explain the characteristics of the model and the relationships.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Developing and Using Models	ESS3.A: Natural Resources	Systems and System Models
Use a model to represent relationships in the natural world.	Living things need water, air, and resources from the land, and they live in places that have the things they need. Humans use natural resources for everything they do.	Systems in the natural and designed world have parts that work together

K-ESS3-3

Students who demonstrate understanding can: Communicate solutions that will reduce the impact of humans on the land, water, air, and/or other living things in the local environment.*

Clarification Statement: Examples of human impact on the land could include cutting trees to produce paper and using resources to produce bottles. Examples of solutions could include reusing paper and recycling cans and bottles.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Obtaining, Evaluating, and Communicating	ESS3.C: Human Impacts on Earth Systems	Cause and Effect
Information	Things that people do to live comfortably	Events have causes that generate
 Communicate solutions with others in 	can affect the world around them. But	observable patterns.
oral and/or written forms using models	they can make choices that reduce their	
and/or drawings that provide detail	impacts on the land, water, air, and other	
about scientific ideas.	living things.	
	ETS1.B: Developing Possible Solutions	
	Designs can be conveyed through	
	sketches, drawings, or physical models.	
	These representations are useful in	
	communicating ideas for a problem's	
	solutions to other people. (secondary)	

K. Weather and Climate

Students who demonstrate understanding can:

K-PS3-1

Make observations to determine the effect of sunlight on Earth's surface. [Clarification Statement: Local observation of duration of sunlight. Examples of Earth's surface could include sand, soil, rocks, and water.] [Assessment Boundary: Assessment of temperature is limited to relative measures such as warmer/cooler.]

K-PS3-2

Use tools and materials to design and build a structure that will reduce the warming effect of sunlight on an area.* [Clarification Statement: Examples of structures could include umbrellas, canopies, and tents that minimize the warming effect of the sun. Explain the characteristics of the structure and their effect on the temperature.]

K-ESS2-1

Use and share observations of local weather conditions to describe patterns over time. [Clarification Statement: Examples of qualitative observations could include descriptions of the weather (such as sunny, cloudy, rainy, and warm); examples of quantitative observations could include numbers of sunny, windy, and rainy days in a month. Examples of patterns could include that it is usually cooler in the morning than in the afternoon and the number of sunny days versus cloudy days in different months.] [Assessment Boundary: Assessment of quantitative observations limited to whole numbers and relative measures such as warmer/cooler.]

K-ESS3-2

Ask questions to obtain information about the purpose of weather forecasting to prepare for, and respond to, severe weather.* [Clarification Statement: Emphasis is on local forms of severe weather.]

K-PS3-1

Students who demonstrate understanding can: Make observations to determine the effect of sunlight on Earth's surface.

Clarification Statement: Local observation of duration of sunlight. Examples of Earth's surface could include sand, soil, rocks, and water.

Assessment Boundary: Assessment of temperature is limited to relative measures such as warmer/cooler.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
 Planning and Carrying Out Investigations Make observations (firsthand or from 	PS3.B: Conservation of Energy and Energy Transfer	Cause and Effect Events have causes that generate
media) to collect data that can be used to make comparisons.	Sunlight warms Earth's surface.	observable patterns.
Connections to Nature of Science		
Scientific Investigations Use a Variety of Methods Scientists use different ways to study the world.		

K-PS3-2

Students who demonstrates understanding can: Use tools and materials to design and build a structure that will reduce the warming effect of sunlight on an area.*

Clarification Statement: Examples of structures could include umbrellas, canopies, and tents that minimize the warming effect of the sun. Explain the characteristics of the structure and their effect on the temperature.]

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Constructing Explanations and Designing	PS3.B: Conservation of Energy and Energy	Cause and Effect
Solutions	Transfer	Events have causes that generate
Use tools and materials provided to design and build a device that solves a specific problem or a solution to a specific problem.	Sunlight warms Earth's surface.	observable patterns.

K-ESS2-1

Students who demonstrate understanding can: Use and share observations of local weather conditions to describe patterns over time.

Clarification Statement: Examples of qualitative observations could include descriptions of the weather (such as sunny, cloudy, rainy, and warm); examples of quantitative observations could include numbers of sunny, windy, and rainy days in a month. Examples of patterns could include that it is usually cooler in the morning than in the afternoon and the number of sunny days versus cloudy days in different months.

Assessment Boundary: Assessment of quantitative observations limited to whole numbers and relative measures such as warmer/cooler.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Analyzing and Interpreting Data	ESS2.D: Weather and Climate	Patterns
 Use observations (firsthand or from 	Weather is the combination of sunlight,	Patterns in the natural world can be
media) to describe patterns in the natural	wind, snow or rain, and temperature in a	observed, used to describe phenomena,
world in order to answer scientific	particular region at a particular time.	and used as evidence.
questions.	People measure these conditions to	
	describe and record the weather and to	
Connections to Nature of Science	notice patterns over time.	
Science Knowledge is Based on Empirical		
Evidence		
 Scientists look for patterns and order 		
when making observations about the		
world.		

K-ESS3-2

Students who demonstrate understanding can: Ask questions to obtain information about the purpose of weather forecasting to prepare for, and respond to, severe weather.*

Clarification Statement: Emphasis is on local forms of severe weather.

The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education.		
Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Asking Questions and Defining Problems	ESS3.B: Natural Hazards	Cause and Effect
 Ask questions based on observations to 	Some kinds of severe weather are more	Events have causes that generate
find more information about the	likely than others in a given region.	observable patterns.
designed world.	Weather scientists forecast severe	
	weather so that the communities can	Connections to Engineering, Technology,
Obtaining, Evaluating, and Communicating	prepare for and respond to these events.	and Applications of Science
Information		
 Read grade-appropriate texts and/or use 	ETS1.A: Defining and Delimiting an	Interdependence of Science, Engineering,
media to obtain scientific information to	Engineering Problem	and Technology
describe patterns in the natural world.	 Asking questions, making observations, 	People encounter questions about the
	and gathering information are helpful in	natural world every day.
	thinking about problems. (secondary)	
		Influence of Engineering, Technology, and
		Science on Society and the Natural World
		People depend on various technologies in
		their lives; human life would be very
		different without technology.